91嫩草精品在线,久草中文网,国产亚洲情侣一区二区无,亞洲av美女二區免費在線播放,天天干网,亚洲第一黄网,亚洲第一黄网


首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機(jī)器人開發(fā) > 實時識別卡扣成功裝配的機(jī)器學(xué)習(xí)框架  
 

實時識別卡扣成功裝配的機(jī)器學(xué)習(xí)框架

來源:CAAI認(rèn)知系統(tǒng)與信息處理專委會      編輯:創(chuàng)澤      時間:2020/5/27      主題:其他   [加盟]
卡扣式裝配廣泛應(yīng)用于多種產(chǎn)品類型的制造中,在零件未加工的情況下也可以進(jìn)行零件連接?ǹ垩b配是結(jié)構(gòu)性的鎖定機(jī)制,不是通過視覺判斷是否成功完成裝配。人們認(rèn)為這兩部分之間形成的力量或響聲是成功的標(biāo)志。這在機(jī)器人裝配中是很難實現(xiàn)的,通常在產(chǎn)品質(zhì)量控制階段才能確定工藝的成功與否。近期,IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING發(fā)表了一篇“A Machine Learning Framework for Real-Time Identification of Successful Snap-Fit Assemblies”的論文,作者通過一個機(jī)器學(xué)習(xí)框架將人類識別成功快速裝配的能力遷移到自主機(jī)器人裝配上。下面我們具體了解相關(guān)研究工作。


1、卡扣力信號分析

在工業(yè)上,一般分為三種主要的卡扣類型,即懸臂式卡扣組件、環(huán)形卡扣組件和扭轉(zhuǎn)式卡扣組件。它們影響零件設(shè)計和卡扣機(jī)構(gòu),所有類型都是相似的,因為它們基于其中一個柔性部件和第二個高剛度的部件,后者允許將兩個部件插入并鎖定在一起[1]。這兩個部分相互推動,導(dǎo)致柔性部件發(fā)生偏轉(zhuǎn),直到施加的力超過一定限度,從而導(dǎo)致兩個部件斷裂。它們的區(qū)別在于鎖定機(jī)構(gòu)的形狀和產(chǎn)生不同力特征的材料特性。懸臂和環(huán)形兩種卡扣組件類型卡扣(圖1)在成功裝配過程中產(chǎn)生的力特征(圖2)如下圖所示。

在懸臂卡扣裝配過程中,一旦咬合成功,柔性部件就會偏轉(zhuǎn),回到其初始位置對其進(jìn)行鎖定,只有拉動柔性部件時才能將這兩個部件分離。對環(huán)形卡扣而言,咬合效果由施加在柔性部件上的恒定載荷決定。一旦載荷消失,卡扣就會松開。扭轉(zhuǎn)卡扣在鎖定運動方面有所不同,兩個部件之間的鎖定運動是旋轉(zhuǎn)的,但產(chǎn)生的力特征與環(huán)形和懸臂相似。

     

零件在不同的裝配階段產(chǎn)生的作用力可用于描述過程狀態(tài)。圖2所示的兩種卡扣的力特征圖具有不同的形狀,可用于及時識別裝配過程的完成情況。在這兩種情況下,物體的偏轉(zhuǎn)都會產(chǎn)生一個恒定的力,一旦部件的力消失,力就會急劇下降,當(dāng)兩部分鎖定在一起時,力就會增大。懸臂卡扣在鎖定之前,兩個部件相互滑動,產(chǎn)生一個恒定的摩擦力,該摩擦力由于部件的材質(zhì)屬性造成的力載荷不同而變化。環(huán)形卡扣則不存在滑動。力信號的確切形狀取決于連接部件的機(jī)械性能和卡扣類型。環(huán)形和懸臂是兩個極端情況,環(huán)形卡扣是在恒定的力載荷下,而懸臂卡扣在咬合后載荷消失。


2、機(jī)器學(xué)習(xí)框架

上述分析表明,所有類型的卡扣都會產(chǎn)生相似但不同的裝配力特征,以確認(rèn)最終的卡扣狀態(tài)。目前大多都是通過具體模型分析方法,這需要大量的時間和精力,而且可重用性有限。因此,本文定義了一個機(jī)器學(xué)習(xí)框架,該框架可以識別所有類型的卡扣的力輪廓特征。為了進(jìn)一步加速這一進(jìn)程,該框架采用了人機(jī)協(xié)作的方式來加速實驗過程,生成具有高可變性和準(zhǔn)確學(xué)習(xí)結(jié)果的數(shù)據(jù)集。

     

只有構(gòu)建一個好的訓(xùn)練和測試集,才能建立一個好的分類器[2]。一個具有統(tǒng)計獨立樣本特征的訓(xùn)練集并不容易建立,特別是當(dāng)需要通過機(jī)器人實驗產(chǎn)生時。一方面,生成這兩個程序集類示例可能無法達(dá)到使用基于數(shù)據(jù)的方法的目的,最終的樣本也不可能涵蓋所有情況。另一方面,人類專家雖然擁有設(shè)計和交付大量變化的實驗的知識,但是沒有充分的準(zhǔn)備時間。人類有一種與生俱來的可變性,允許構(gòu)建一個豐富的信息數(shù)據(jù)集,從而改善機(jī)器學(xué)習(xí)的效果。這一點,加上人參與裝配過程所節(jié)省的大量時間,都顯示了人機(jī)協(xié)作的優(yōu)勢。上述內(nèi)容包含在圖3所示的擬議的框架中,其中定義了兩個離散階段:訓(xùn)練和操作階段。


訓(xùn)練階段的目的是生成一個能夠?qū)崟r準(zhǔn)確表征力信號的分類器。在這一階段,裝配是協(xié)作完成的,其中機(jī)器人拿著兩個零件中的一個充當(dāng)智能傳感器,而人類則作為專家進(jìn)行手動裝配。在人機(jī)協(xié)作中,需要一個可以估計或測量的力,而不需要機(jī)器人的力傳感器或外部的視覺系統(tǒng),從而降低了成本和復(fù)雜性。論文展示了許多成功和失敗的裝配例子,在各種不同的條件下以不同的速度進(jìn)行了演示。


3、特征選擇

如圖2所示,卡扣裝配可以概括為在時間序列上力特征的獨特表示。相比之下,不成功的情況可能會有很大的不同,因力不足導(dǎo)致部件錯位產(chǎn)生噪聲信號,導(dǎo)致力上升而不出現(xiàn)明顯的下降?ǹ劢M件的力信號與零件的材料和鎖定機(jī)構(gòu)有關(guān)。由于低頻力信號在其頻譜中顯示的信息很少,因此基于頻率的特征不被考慮。首先選擇了24個特征并進(jìn)行計算,以進(jìn)一步評估其識別卡扣裝配的能力。統(tǒng)計的信號特征包括信號能量、偏差度、方差、對數(shù)變換、峰度和Willison振幅等。為了避免過度擬合,降低分類器的復(fù)雜度,降低對大型訓(xùn)練集的要求,降低算法的復(fù)雜度。由于特征向量的初始尺寸較小,采用了一種窮舉搜索子集的選擇方法,具有較高的性能(精度>0.95)[3]。對于最終的特征選擇,考慮了每個特征的計算復(fù)雜度。 


4、實驗結(jié)果

作者進(jìn)行了大量的實驗來分析所提出的框架,并對其在兩個階段的效率進(jìn)行了評估。首先介紹實驗裝置,然后介紹數(shù)據(jù)采集過程和實驗結(jié)果。將7自由度的KUKA LWR4+機(jī)械手與三指夾持器Barret BH-8連接,并使用特制夾持器進(jìn)行評估。選擇了兩組不同的部件(圖4),代表懸臂和環(huán)形卡扣組件。在不使用外力傳感器的情況下,通過KUKA力估算機(jī)制測量兩個部件之間產(chǎn)生的裝配力。



對于懸臂卡扣,插頭的外接部分安裝在定制的夾鉗上(圖5)。然后母零件被固定在一個穩(wěn)定的基座上,由機(jī)器人進(jìn)行自主裝配。針對懸臂和環(huán)形卡扣裝配都進(jìn)行了分析,以評估懸臂和環(huán)形卡扣裝配的選擇特征。首先,根據(jù)訓(xùn)練階段收集到的數(shù)據(jù)集,評估所提出的特征和訓(xùn)練分類器的效果。然后,應(yīng)用整個框架以提高其整體效率。


收集了四個不同的數(shù)據(jù)集,其中兩個是通過人機(jī)協(xié)作收集的,另外兩個是在機(jī)器人自主操作時收集的。在每種情況下,都有一半的程序集成功完成裝配,另一半則未能完成裝配。由于零件未對準(zhǔn)或所需力不足,會產(chǎn)生兩種不同類型的不成功卡扣裝配的情況。最后,為了測試效果,機(jī)器人裝配是在四種不同的平均速度下完成的。


結(jié)果表明,在訓(xùn)練集相對較小的情況下,通過人機(jī)協(xié)作提取的分類器能夠獲得很好的識別效果。需要注意的是,當(dāng)整個訓(xùn)練集用于分類器的訓(xùn)練時,懸臂和環(huán)形卡扣的精度分別達(dá)到0.96和0.98。即使是訓(xùn)練集的一小部分,分類器的性能也非常好,在只有N=20和N=22個樣本時,分類器的中值達(dá)到了0.9。另一個重要的觀察結(jié)果是,當(dāng)訓(xùn)練集規(guī)模增大時,精度異常值幾乎為零,方差顯著下降,顯示了結(jié)果統(tǒng)計的顯著性。


運行評估。評估了所提出的框架的整體效能,以實時接收組件裝配信號。結(jié)果表明,該方法具有良好的識別性能,與全訓(xùn)練集相似,準(zhǔn)確度、特異性和靈敏度均衡,平均值分別為0.92、0.981和0.86。這些結(jié)果表明與整個數(shù)據(jù)集(N=60)訓(xùn)練的分類器性能相比,該分類器性能的相對變化較小,分別為7%、0.08%和0.14%。然而,結(jié)果會隨著訓(xùn)練集規(guī)模的不同而變化,該訓(xùn)練集包含很多異常值,類似于圖6所示的分類器的結(jié)果。因此,為了克服此類問題,應(yīng)仔細(xì)挑選訓(xùn)練集,以便在成功和失敗的情況下包含所有信號變化。


轉(zhuǎn)換評估。這兩種分類器對成功的卡扣裝配信號具有很高的分類精度。對不成功信號的分類精度較低,特征值分別下降到0.673和0.715。該分類器的總體性能用平衡精度來表示,兩種情況下分別為0.836和0.857。盡管分類器具有相對較好的平衡精度,但其特異度非常低,這表示不成功的裝配很容易被識別為成功裝配。


不可見對象的綜合評價。在這一部分中,對所提出的方法用于概括不同對象的整體能力進(jìn)行了評估。環(huán)形卡扣通過人機(jī)協(xié)作在數(shù)據(jù)集上訓(xùn)練產(chǎn)生的分類器,用于識別另一種環(huán)形卡扣類型的卡扣組件,在機(jī)器人自主操作下進(jìn)行裝配(圖7)。盡管這兩個對象不同,但它們有相似的咬合機(jī)制并生成相似的力配置文件。然而,不可見的物體有更嚴(yán)格的力學(xué)機(jī)制,并且咬合發(fā)生在較大的力振幅中,平均咬合值為45 N。在評估過程中,收集了30次咬合力剖面,每個部件有15個信號(成功和失。T摲诸惼饕詫崟r方式對信號進(jìn)行處理,同時信號在訓(xùn)練集的管理單元級別上擴(kuò)展并在200ms時間窗口中采樣。結(jié)果表明,對所有成功的裝配部件和265個不成功的卡扣裝配部件中的191個部件進(jìn)行了正確的分類,平均精度達(dá)到0.8604(72.08%特異性)。同時對離線情況(全信號分類)也進(jìn)行了評估。整體準(zhǔn)確度為0.9, 15個裝配失敗信號中的12個(80%特異性)被識別出,所有成功卡扣裝配部件信號都被識別出來。結(jié)果表明,該方法無需重新訓(xùn)練,可以很好地推廣。


該方法與通過具體模型分析方法進(jìn)行了進(jìn)一步的比較[4]。該框架是與另一框架在同一個數(shù)據(jù)集中完成的。這個數(shù)據(jù)集由33個裝配電連接器的力信號組成,其中9個屬于成功裝配的部件,而其余的屬于不同類型的錯誤裝配部件。為了評估該框架,將不同類別的不成功的數(shù)據(jù)合并在一起,將數(shù)據(jù)集拆分為一個訓(xùn)練集(60%)和一個測試集(40%)。用基于模型的方法得出四種不同類別的精度,結(jié)果平均精度為0.945。因為原始數(shù)據(jù)集的40%被用于驗證該方法,所以無法進(jìn)行絕對公平的比較,但結(jié)果顯示效果相對較好。


5、結(jié)論

本文提出了一種基于機(jī)器學(xué)習(xí)的快速裝配的框架。該框架在兩種不同的卡扣裝配下進(jìn)行了測試,顯示出較高的識別精度(高達(dá)0.99)。通過人機(jī)協(xié)作訓(xùn)練產(chǎn)生了良好的學(xué)習(xí)數(shù)據(jù)集,成功和失敗案例的可變性都很高。該特征集對不同的對象中進(jìn)行了測試,顯示它在不同的卡扣裝配類型中的能力。只要對數(shù)據(jù)集進(jìn)行仔細(xì)的采樣,即使是很小的N=20個樣本的訓(xùn)練集,分類器的性能也能表現(xiàn)出良好的效果,可達(dá)精度>0.9。同時與基于模型的方法進(jìn)行了比較,結(jié)果表明了該方法的顯著優(yōu)異性。該框架未來將在更多類型的卡扣裝配中進(jìn)一步驗證。


參考文獻(xiàn)

[1] J. Ji, K.-M. Lee,and S. Zhang, “Cantilever snap-fit performance analysis for haptic evaluation,”J. Mech. Des., vol. 133, no. 12, 2011, Art. no. 121004.

[2] C. Beleites, U.Neugebauer, T. Bocklitz, C. Krafft, and J. Popp, “Sample size planning forclassification models,” Anal. Chim. Acta, vol. 760, pp. 25–33, Jan.2013.

[3] I. Guyon and A.Elisseeff, “An introduction to variable and feature selection,” J. Mach.Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[4] J. Huang, Y.Wang, and T. Fukuda, “Set-membership-based fault detection and isolation forrobotic assembly of electrical connectors,” IEEE Trans. Autom. Sci. Eng., vol.15, no. 1, pp. 160–171, Jan. 2018. [Online]. Available: http://ieeexplore.ieee.org/document/7572012/



  



基于多任務(wù)學(xué)習(xí)和負(fù)反饋的深度召回模型

基于行為序列的深度學(xué)習(xí)推薦模型搭配高性能的近似檢索算法可以實現(xiàn)既準(zhǔn)又快的召回性能,如何利用這些豐富的反饋信息改進(jìn)召回模型的性能

張帆博士與Yiannis Demiris教授團(tuán)隊提出高效的機(jī)器人學(xué)習(xí)抓取衣服方法

機(jī)器人輔助穿衣通常人工的將衣服附在機(jī)器人末端執(zhí)行器上,忽略機(jī)器人識別衣服抓取點并進(jìn)行抓取的過程,從而將問題簡化

百度算法大牛35頁PPT講解基于EasyDL訓(xùn)練并部署企業(yè)級高精度AI模型

百度AI開發(fā)平臺高級研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開發(fā)中的難點,以及針對這些難點,百度EasyDL專業(yè)版又是如何解決的

Technica公司發(fā)布智能霧計算平臺技術(shù)白皮書

SmartFog可以輕松地將人工智能分析微服務(wù)部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實現(xiàn)方案,要用下一代人工智能算法來彌補(bǔ)現(xiàn)有解決方案的不足。

深度學(xué)習(xí)在術(shù)前手術(shù)規(guī)劃中的應(yīng)用

深度學(xué)習(xí)對推動術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來計劃手術(shù)程序,而成像對于手術(shù)的成功至關(guān)重要

迎賓機(jī)器人企業(yè)【推薦】

2022年迎賓機(jī)器人企業(yè):優(yōu)必選、穿山甲、創(chuàng)澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達(dá)、睿博天米、銳曼智能、康力優(yōu)藍(lán)、云跡科技、南大電子、獵戶星空、瞳步智能

從兩會提案看清機(jī)器人行業(yè)五大趨勢

在新冠疫情背景下,隨著新基建持續(xù)火熱,機(jī)器人行業(yè)的發(fā)展也被按下了快進(jìn)鍵,服務(wù)機(jī)器人價值凸顯,讓更多人看到了服務(wù)機(jī)器人在更多場景中的應(yīng)用可能

苗圩:中國每周增加1萬多個5G基站

5月25日,工業(yè)和信息化部部長苗圩指出,5G從今年以來加快了建設(shè)速度,每一周大概要增加1萬多個5G的基站

35省/市5G建設(shè)最新進(jìn)展與規(guī)劃一覽

在5月17日的2020年世界電信和信息社會日大會上,中國三大運營披露了5G進(jìn)展及計劃,據(jù)了解,目前全國5G基站已達(dá)24萬個

日照市中小企業(yè)“專精特新”培育提升專項行動方案(2020—2022 年)

5月25日,日照市人民政府辦公室印發(fā)了《日照市中小企業(yè)“專精特新”培育提升專項行動方案(2020—2022年)》的通知

日照市中小企業(yè)“專精特新”培育提升專項行動方案(2020—2022年)

5月25日,日照印發(fā)了《日照市中小企業(yè)“專精特新”培育提升專項行動方案》第一部分:目標(biāo)任務(wù),第二部分:培育對象及發(fā)展方向,第三部分:工作重點

2020數(shù)據(jù)安全企業(yè)排行[中國新基建]

安全企業(yè)名單:三六零,深信服,啟明星辰,衛(wèi)士通 ,綠盟科技,美亞柏科,安恒信息,迪普科技,東方通,北信源

泰合資本董事湯蕊菱:未來消費的關(guān)鍵詞是“分層”

消費行業(yè)的整體變化是用戶不斷細(xì)分、個性鮮明的品牌商品更受青睞、用戶更加理性等特征日益明顯

市際無縫換乘!青島公交要延伸到日照

日照市交通運輸局局長滕厚軍介紹,日照將加快推進(jìn)山海天王家灘公交場站改造,實現(xiàn)青島902路公交進(jìn)站停發(fā),市際無縫換乘;根據(jù)道路交通設(shè)施建設(shè)情況和市民需求,隨時新開辟、調(diào)整公共交通線路,實現(xiàn)日照與青島、濰坊公共交通互聯(lián)互通和設(shè)施共享

“觸控一體化”的新型機(jī)械手指尖研究

機(jī)械手面臨的難點在于如何在柔性物體上施加可控的擠壓力,以及在非穩(wěn)定狀況下確保精確、穩(wěn)健的抓握與柔性指端操控

2020 5g設(shè)備商排行

2020新基建5g設(shè)備商排行榜:華為 中興通訊 紫光股份 深南電路 星網(wǎng)銳捷 烽火通信 信維通訊 大唐電信 科信技術(shù) 沃特股份

衛(wèi)健委下發(fā)建設(shè)【智慧醫(yī)院】的通知

國家衛(wèi)生健康委辦公廳關(guān)于進(jìn)一步完善預(yù)約診療制度加強(qiáng)智慧醫(yī)院建設(shè)的通知,增強(qiáng)人民群眾就醫(yī)獲得感,現(xiàn)就進(jìn)一步建立完善預(yù)約診療制度

迎賓機(jī)器人企業(yè)【推薦】

2022年迎賓機(jī)器人企業(yè):優(yōu)必選、穿山甲、創(chuàng)澤智能、慧聞科技、杭州艾米、廣州卡伊瓦、勇藝達(dá)、睿博天米、銳曼智能、康力優(yōu)藍(lán)、云跡科技、南大電子、獵戶星空、瞳步智能

山東機(jī)器人公司準(zhǔn)獨角獸企業(yè)-創(chuàng)澤智能

山東機(jī)器人公司,創(chuàng)澤機(jī)器人榮獲山東省工信廳人工智能領(lǐng)域的準(zhǔn)獨角獸的稱號,是中國工信部人工智能產(chǎn)業(yè)創(chuàng)新重點任務(wù)揭榜優(yōu)勝單位

消毒機(jī)器人優(yōu)勢、技術(shù)及未來發(fā)展趨勢

消毒機(jī)器人有哪些優(yōu)勢,未來發(fā)展趨勢

家庭陪護(hù)機(jī)器人

家庭陪護(hù)機(jī)器人能在家中起到監(jiān)控安全陪護(hù)具有人機(jī)互動交互服務(wù)多媒體娛樂價格查詢等

兒童陪護(hù)機(jī)器人

兒童陪護(hù)機(jī)器人與孩子互動陪伴玩耍學(xué)習(xí)價格問詢等功能說明使用指南介紹

展館智能機(jī)器人

展館智能機(jī)器人可講解自主行走語音交互咨詢互動價格咨詢等功能介紹以及表情展現(xiàn)能力

智能講解機(jī)器人

智能講解機(jī)器人正在劍橋講解演示咨詢互動移動宣傳價格問詢等功能說明介紹

智能接待機(jī)器人

智能接待機(jī)器人迎賓服務(wù)來賓問詢答疑價格查詢

智能主持機(jī)器人

智能主持機(jī)器人參與主持了寧夏的云天大會并完成了大會的接待任務(wù)多才多藝載很受歡迎

超市智能機(jī)器人

超市智能機(jī)器人能幫助商家吸引客戶道路指引導(dǎo)購價格查詢

4s店智能機(jī)器人

4s店智能機(jī)器人迎賓銷售導(dǎo)購數(shù)據(jù)收集分析價格問詢等

展廳智能機(jī)器人

展廳智能機(jī)器人可用于接待講解咨詢互動價格查詢等功能
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機(jī)器人未來3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機(jī)器人上崗門診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無主燈智能化規(guī)范
» 微波雷達(dá)傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運營體系(ML0ps)實踐指
» 四驅(qū)四轉(zhuǎn)移動機(jī)器人運動模型及應(yīng)用分析
» 國內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場景
» 國內(nèi)科技大廠布局生成式 AI,未來有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時更短 優(yōu)
 
== 機(jī)器人推薦 ==
 
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人底盤

機(jī)器人底盤

 

商用機(jī)器人  Disinfection Robot   展廳機(jī)器人  智能垃圾站  輪式機(jī)器人底盤  迎賓機(jī)器人  移動機(jī)器人底盤  講解機(jī)器人  紫外線消毒機(jī)器人  大屏機(jī)器人  霧化消毒機(jī)器人  服務(wù)機(jī)器人底盤  智能送餐機(jī)器人  霧化消毒機(jī)  機(jī)器人OEM代工廠  消毒機(jī)器人排名  智能配送機(jī)器人  圖書館機(jī)器人  導(dǎo)引機(jī)器人  移動消毒機(jī)器人  導(dǎo)診機(jī)器人  迎賓接待機(jī)器人  前臺機(jī)器人  導(dǎo)覽機(jī)器人  酒店送物機(jī)器人  云跡科技潤機(jī)器人  云跡酒店機(jī)器人  智能導(dǎo)診機(jī)器人 
版權(quán)所有 © 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728